this post was submitted on 14 Jul 2025
47 points (100.0% liked)

Selfhosted

49590 readers
554 users here now

A place to share alternatives to popular online services that can be self-hosted without giving up privacy or locking you into a service you don't control.

Rules:

  1. Be civil: we're here to support and learn from one another. Insults won't be tolerated. Flame wars are frowned upon.

  2. No spam posting.

  3. Posts have to be centered around self-hosting. There are other communities for discussing hardware or home computing. If it's not obvious why your post topic revolves around selfhosting, please include details to make it clear.

  4. Don't duplicate the full text of your blog or github here. Just post the link for folks to click.

  5. Submission headline should match the article title (don’t cherry-pick information from the title to fit your agenda).

  6. No trolling.

Resources:

Any issues on the community? Report it using the report flag.

Questions? DM the mods!

founded 2 years ago
MODERATORS
 
GPU VRAM Price (€) Bandwidth (TB/s) TFLOP16 €/GB €/TB/s €/TFLOP16
NVIDIA H200 NVL 141GB 36284 4.89 1671 257 7423 21
NVIDIA RTX PRO 6000 Blackwell 96GB 8450 1.79 126.0 88 4720 67
NVIDIA RTX 5090 32GB 2299 1.79 104.8 71 1284 22
AMD RADEON 9070XT 16GB 665 0.6446 97.32 41 1031 7
AMD RADEON 9070 16GB 619 0.6446 72.25 38 960 8.5
AMD RADEON 9060XT 16GB 382 0.3223 51.28 23 1186 7.45

This post is part "hear me out" and part asking for advice.

Looking at the table above AI gpus are a pure scam, and it would make much more sense to (atleast looking at this) to use gaming gpus instead, either trough a frankenstein of pcie switches or high bandwith network.

so my question is if somebody has build a similar setup and what their experience has been. And what the expected overhead performance hit is and if it can be made up for by having just way more raw peformance for the same price.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 1 points 3 days ago

Tflops is a generic measurement, not actual utilization, and not specific to a given type of workload. Not all workloads saturate gpu utilization equally and ai models will depend on cuda/tensor. the gen/count of your cores will be better optimized for AI workloads and better able to utilize those tflops for your task. and yes, amd uses rocm which i didn't feel i needed to specify since its a given (and years behind cuda capabilities). The point is that these things are not equal and there are major differences here alone.

I mentioned memory type since the cards you listed use different versions ( hbm vs gddr) so you can't just compare the capacity alone and expect equal performance.

And again for your specific use case of this large MoE model you'd need to solve the gpu-to-gpu communication issue (ensuring both connections + sufficient speed without getting bottlenecked)

I think you're going to need to do actual analysis of the specific set up youre proposing. Good luck