this post was submitted on 13 Jul 2025
678 points (100.0% liked)
Comic Strips
18199 readers
2105 users here now
Comic Strips is a community for those who love comic stories.
The rules are simple:
- The post can be a single image, an image gallery, or a link to a specific comic hosted on another site (the author's website, for instance).
- The comic must be a complete story.
- If it is an external link, it must be to a specific story, not to the root of the site.
- You may post comics from others or your own.
- If you are posting a comic of your own, a maximum of one per week is allowed (I know, your comics are great, but this rule helps avoid spam).
- The comic can be in any language, but if it's not in English, OP must include an English translation in the post's 'body' field (note: you don't need to select a specific language when posting a comic).
- Politeness.
- Adult content is not allowed. This community aims to be fun for people of all ages.
Web of links
- [email protected]: "I use Arch btw"
- [email protected]: memes (you don't say!)
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Yeah, those models are referred to as "discriminative AI". Basically, if you heard about "AI" from around 2018 until 2022, that's what was meant.
The discriminative AI's are just really complex algorithms, and to my understanding, are not complete black-boxes. As someone who has a lot of medical problems I receive care for as well as being someone who will be a physician in about 10 months, I refuse to trust any black-box programming with my health or anyone else's.
Right now, the only legitimate use generative AI has in medicine is as a note-taker to ease the burden of documentation on providers. Their work is easily checked and corrected, and if your note-taking robot develops weird biases, you can delete it and start over. I don't trust non-human things to actually make decisions.
They are black boxes, and can even use the same NN architectures as the generative models (variations of transformers). They're just not trained to be general-purpose all-in-one solutions, and have much more well-defined and constrained objectives, so it's easier to evaluate how their performance may be in the real-world (unforeseen deficiencies, and unexpected failure modes are still a problem though).