Okay, so why can't we just not use exponentially growing values? Like 96 bit (64 + 36). I'd the something intrinsic about the size increases that they HAVE to be exponential? Why not linear scaling? 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, etc.
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
In binary, when you add one more numeric place, things double. Not doubling would be like having two digit decimal numbers but only allowing people to count to 50.
so i guess the next bit after 64 cpu is qu-bit, quantum bit
Probably not in consumer grade products in any foreseeable future.
Would it be a downside? Slower? Very costly?
More complexity with barely any (practical) benefits for consumers.
Even the newest "64-bit" cpus are really just 48-bit (or 36-bit on low end) or if bleeding edge 56-bit physical adressing processors. This is the maximum amount of virtual memory a process can have access to. You could memory map all your hard disks an still have room to map more physical memory to VMA.