this post was submitted on 02 Oct 2023
34 points (97.2% liked)

LocalLLaMA

2775 readers
65 users here now

Welcome to LocalLLaMA! Here we discuss running and developing machine learning models at home. Lets explore cutting edge open source neural network technology together.

Get support from the community! Ask questions, share prompts, discuss benchmarks, get hyped at the latest and greatest model releases! Enjoy talking about our awesome hobby.

As ambassadors of the self-hosting machine learning community, we strive to support each other and share our enthusiasm in a positive constructive way.

founded 2 years ago
MODERATORS
 

Trying something new, going to pin this thread as a place for beginners to ask what may or may not be stupid questions, to encourage both the asking and answering.

Depending on activity level I'll either make a new one once in awhile or I'll just leave this one up forever to be a place to learn and ask.

When asking a question, try to make it clear what your current knowledge level is and where you may have gaps, should help people provide more useful concise answers!

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 3 points 1 year ago (1 children)

Do you usually have some other front-end over the model? I can run llama.cpp directly in interactive mode but the results are a little underwhelming. However there seem to be various front ends that get better results? Is this down to better prompting and parameter control? I've seen temperature mentioned in relation to ChatGPT but I have no idea what rope and yarn factors are for?

[โ€“] [email protected] 3 points 1 year ago

I use text-generation-webui mostly. If you're only using GGUF files (llama.cpp), koboldcpp is a really good option

A lot of it is the automatic prompt formatting, there's probably like 5-10 specific formats that are used, and using the right one for your model is very important to achieve optimal output. TheBloke usually lists the prompt format in his model card which is handy

Rope and yarn refer to extending the default context of a model through hacky (but functional) methods and probably deserve their own write up