this post was submitted on 03 Sep 2024
485 points (100.0% liked)

science

19563 readers
741 users here now

A community to post scientific articles, news, and civil discussion.

rule #1: be kind

founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 17 points 9 months ago* (last edited 9 months ago) (3 children)

Yeah, why do masless particles have momentum? And please not because law X says so.

[–] [email protected] 37 points 9 months ago (1 children)

In short, even though photons have no mass, they still have momentum proportional to their energy, given by the formula p=E/c. Because photons have no mass, all of the momentum of a photon actually comes from its energy and frequency as described by the Planck-Einstein relation E=hf.

From here: https://profoundphysics.com/if-photons-have-no-mass-how-can-they-have-momentum/

Essentially, momentum is a function of energy, not mass. It's just that massive objects have way more momentum than massless ones.

[–] [email protected] 16 points 9 months ago* (last edited 9 months ago)

Essentially, momentum is a function of energy, not mass.

Thanks! That's the critical piece of information.

[–] [email protected] 10 points 9 months ago (3 children)

Because they have mass. They don't have "mass at rest", but they are never at rest anyway.

Do you remember that famous E = mc^2 equation? Everything that has energy has mass.

[–] [email protected] 5 points 9 months ago* (last edited 9 months ago) (1 children)

But how do you apply this with Lorentz' transformation (i.e. relativistic factors)? You cannot approach the speed of light without considering relativism. It is known that p = gamma * m * v where p is momentum, gamma is the gamma factor given by sqrt(1/(1 - (v^2/c^2))), m is mass and v is velocity. If you study the gamma factor, you'll realize that it approaches infinite as v approaches c, the speed of light. Since we are actually dealing with light here, where v = c we are breaking the equation. Momentum cannot be defined for any mass which moves at the speed of light. It's asymptotic at that speed.

Also note that the same goes for E = mc^2. At relativistic speeds, also this equation needs to consider the gamma factor. So those classical equations break down for light.

The answer is that photons don't have mass, but they have energy. There is a good explanation a bit further up in this thread on how this is possible.

[–] [email protected] 1 points 9 months ago

The one that you multiply with gamma is the rest mass, not the total mass.

To be short, p = m_0 * γ * v, where m_0 is the rest mass. Put that in your equation and look what happens.

[–] [email protected] 1 points 9 months ago (1 children)

So photons only have no mass if they don't move? Do they even exist if they don't move?

[–] [email protected] 4 points 9 months ago (1 children)

Do they even exist if they don’t move?

No. Or, at least not from our point of view.

They only exist moving at the speed at light. All particles with no rest mass only exist moving at the speed of light.

[–] [email protected] 1 points 9 months ago* (last edited 9 months ago) (1 children)
[–] [email protected] 3 points 9 months ago (1 children)
[–] [email protected] 1 points 9 months ago

Else they don't. We are talking quantum here.

[–] [email protected] 1 points 9 months ago

Energy is mass