this post was submitted on 10 Dec 2024
329 points (100.0% liked)
Technology
68244 readers
3938 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
How many calculations can your computer do in an hour? The answer is a lot.
Indeed, you're very correct. It can also remember those results for over an hour. Hell, a jumping spider has better memory than that.
The output of a quantum computer is read by a classical computer and can then be transferred or stored as long as you liked use traditional means.
The lifetime of the error corrected qubit mentioned here is a limitation of how complex of a quantum calculation the quantum computer can fix. And an hour is a really, really long time by that standard.
Breaking RSA or other exciting things still requires a bunch of these error corrected qubits connected together. But this is still a pretty significant step.
Well riddle me this, if a computer of any sort has to constantly keep correcting itself, whether in processing or memory, well doesn't that seem unreliable to you?
Hell, with quantum computers, if the temperature ain't right and you fart in the wrong direction, the computations get corrupted. Even when you introduce error correction, if it only lasts an hour, that still doesn't sound very reliable to me.
On the other hand, I have ECC ChipKill RAM in my computer, I can literally destroy a memory chip while the computer is still running, and the system is literally designed to keep running with no memory corruption as if nothing happened.
That sort of RAM ain't exactly cheap either, but it's way cheaper than a super expensive quantum computer with still unreliable memory.
Error correction is the study of the mathematical techniques that let you make something reliable out of something unreliable. Much of classical computing heavily relies on error correction. You even pointed out error correction applied in your classical computer.
The reason so much money is being invested in the development of quantum computers is mathematical work that suggests a sufficiently big enough quantum computer will be able to solve useful problems in an hour that would take the worlds biggest classical computer thousands of years to solve.
Why do we humans even think we need to solve these extravagantly over-complicated formulas in the first place? Shit, we're in a world today where kids are forgetting how to spell and do basic math on their own, no thanks to modern technology.
Don't get me wrong, human curiosity is an amazing thing. But that's a two edged sword, especially when we're augmenting genuine human intelligence with the processing power of modern technology and algorithms.
Just because we can, doesn't necessarily mean we should. We're gonna end up with a new generation of kids growing up half dumb as a stump, expecting the computers to give us all the right answers.
Smart technology for dumb people...
lol.
All of modern technology boils down to math. Curing diseases, building our buildings, roads, cars, even how we do farming these days is all heavily driven by science and math.
Sure, some of modern technology has made people lazy or had other negative impacts, but it’s not a serious argument to say continuing math and science research in general is worthless.
Specifically relating to quantum computing, the first real problems to be solved by quantum computers are likely to be chemistry simulations which can have impact in discovering new medicines or new industrial processes.
Your responses to Herr Dunning-Kruger here were very patient and succinct. I learned from them so thanks for making that effort.
Because those questions could do things like cure disease or help us better understand the universe or a million other things
Not because of it, either. This research isn't really related to that kind of tech, either
This isn't going to be for daily normal use, you're projecting fear at the wrong tech
Ask a quantum chip how to cure a disease? Sure, let's accept that as a possible future...
You really think the chips actually understand diseases? We're gonna end up with a whole new generation of people that have no clue how the shit works to begin with.
Eventually it'll be like "How do I trim my toenails?", while the 'intelligent' system responds to cut your appendages off.
Granted that AI and quantum computing aren't quite the same thing. Does it matter? Future generations will have the ability to just ask a computer how to ~~generate~~ cure a disease..
The machine gives no fucks about us, it'll just as easily destroy us if someone asks the wrong question or enters the wrong formula.
No, that's not how that works at all
Nope
Projecting? Its very clear you have no idea how this stuff works, that's for sure
They aren't the same at all
Almost certainly an impossibility