This is one of those headlines that's more obscuring than enlightening. We knew a bunch of ways that you could arrange three gravitational bodies and have them be in a stable orbit around each other. This adds 12,000 more. However, a general solution is still incredibly complicated, and the Trisolarans would still like to have a little chat with us in Australia some time.
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
Title is wrong. Unsolvable means no general closed form solution. That doesn't mean that single constellations cannot be proven stable.
There is for example a trivial solution to the n-body problem. Arrange all bodies equidistant on a circle and have them move at the speed that keeps them on the circle.
Damn it, I just started Cixin's book and now these jerks are going to spoil it;)
I didn’t think that book lived up to the hype. But maybe I just didn’t get it.
I thought the first book was pretty meh with big ideas but mid execution, but holy hell was the sequel exciting and leagues ahead in terms of quality. Really delivers on what the first novel sets up.
Idk it was fun for me. I thought it was interesting being from China, I'm not that well read so the Chinese author put a cool perspective on the novel.
I think it's similar to a lot of golden age SF novels from Clarke, Asimov, etc. Big, fantastic ideas combined with characters that are cardboard cutouts.
It was pretty meh.
I guess we'll just go with the first one.
Now onto the four body problem!
Wsn't it solved long ago? There's even an old KSP mod 'Pricipia' for it.
You can simulate a specific arrangement of n-bodies, where n > 2. Depending on how accurate you want it to be, you may need a supercomputer.
If n = 2, then you can work it out on a napkin. If n = 1, you can draw a circle, point at it, and say "I figured it out!"
So they mean there's no general solution. That doesn't mean that we can't find specific solutions.
As for your notion of solved, that's solved in a numerical sense.